S P E E WA H P F S U P D AT E A N D

P R O J E CT PL A N

--------------------------------------------------------------------------------------------------------------

Australian Securities Exchange Announcement 21 January 2020

--------------------------------------------------------------------------------------------------------------

Highlights

  • Sulphuric acid leach testwork on magnetite concentrate, non-magnetic concentrate fractions and run of mine rock now supports the potential of a smaller scale project development design where Alumina is primarily targeted and extracted by leaching rock that has only been mined, crushed and ground to 0.15mm without further beneficiation.
  • These changes in the PFS process design to focus on HPA, with V, Ti and Fe co-products, may deliver positive economic impacts on the Speewah project.

King River Resources Limited (ASX: KRR) is pleased to provide this Prefeasibility Study ("PFS") update on the company's 100% owned Speewah Specialty Metals ("SSM") Project in the East Kimberley of Western Australia. KRR has been examining a new process route to produce high purity alumina ("HPA"), vanadium pentoxide (V2O5), titanium dioxide pigment (TiO2) and iron oxide (Fe2O3) products in a smaller scaled operation for the Prefeasibility Study ("PFS") (refer KRR ASX release 26 November 2019).

Study developments

  • KRR made a breakthrough in extracting aluminium (Al) directly from the V, Ti, Fe, Al and Mg rich sulphuric acid leach solution as the first precipitation product (KRR ASX release 26 November 2019) from which 99.98% Al2O3 HPA was produced by a new process (KRR ASX release 6 December 2019).
  • KRR is progressing flowsheet development of its new process to make HPA, and also the extraction of V2O5, TiO2 and Fe2O3 by conventional solvent extraction methods.
  • HPA testwork has focussed on simplifying the process steps to improve Al recovery and ensure the lowest level of contaminants for the production of 4N (99.99% Al2O3) HPA.
  • Sulphuric (H2SO4) acid leach testwork has compared the merits of leaching concentrates, non- magnetic fractions and whole rock samples. This has enabled KRR to select leaching of whole rock magnetite gabbro as the preferred initial design for a small scale operation that delivers the optimal amount of HPA. The grade of Al in the whole rock material is typically 12.7% Al2O3, with 0.36-0.38% V2O5, 3.6% TiO2 and 21.3% Fe2O3. This smaller scale start-up SMM project development plan may provide a basis for its future scale-up to produce more V, Ti and Fe products in proportion to prices and demand.
  • The latest whole rock leach results are summarised below. The drill core samples tested are from the high grade zone of SDH11-09 (see Figure 1), ground to P80 0.15mm, leached in 20% H2SO4 at 70°C and 20, 30% and 35% pulp densities, for 96 hours.

Agitated

Pulp

Leach Extractions (%)

Mass

Acid

Loss

Consumption

Density

Leach Test

(%)

V

Fe

Ti

Mg

Al

Ca

%

kg/t

AVL#39

20

90

75

58

55

42

3.52

26

622.9

AVL#40

30

87

71

54

50

37

2.70

25

586.6

AVL#41

35

89

75

59

55

39

2.53

29

586.7

Further leach testwork is planned to try to increase the Al extraction to >50% by reducing the grind size and extending the leach time. Previous agitated vat tests on lump material had achieved >50% Al extraction over 10 days under similar leach conditions (KRR ASX announcement 18 January 2019).

  • Mineral characterisation studies on the magnetite gabbro have shown zonation of the alumina-rich plagioclase feldspar (see bright colours in left SEM map image, unleached) with the outer rim of the mineral more soluble in dilute acid (right SEM map image, leached). This may explain the high Al and low Na and K extractions in all leach testwork, and also the acid penetration of the rock mass in column leach testwork (KRR ASX release 1 March 2019).
  • The Junction vanadium deposit drill results (KRR ASX announcement 27 September 2019), located on the granted Mining Lease M80/267 (Figure 1), provide further optionality for the development and timing of the SSM project.

Directors Comments

KRR continues to make very positive steps forward towards identifying the most prudent process route and scale for the Speewah Specialty Metals (SSM) Project.

The incorporation of HPA product to our process flowsheet may deliver a valuable improvement to project economics.

Simple run of mine (ROM) rock that has been crushed to 150 micron (0.15mm) and used as the feedstock into the acid leaching process may also reduce operating and capital costs.

Our new HPA process is also expected to simplify the solvent extraction of V, Ti and Fe.

The current focus of studies is aiming to reduce initial start-up scale, thus reducing capex and risk whilst retaining strong margins.

The Board has also identified that the cost of sulphuric acid and the electricity in the volume required for the type of mineral processing envisaged in the SSM may be materially cheaper in some overseas locations.

Studies to consider the economic benefits of offshore processing will be addressed at the Bankable Feasibility Study stage.

Statement by Competent Person

The information in this report that relates to Exploration Results, Mineral Resources, Metallurgy and Previous Studies is based on information compiled by Ken Rogers (BSc Hons) and fairly represents this information. Mr. Rogers is the Chief Geologist and an employee of King River Resources Ltd, and a Member of both the Australian Institute of Geoscientists (AIG) and The Institute of Materials Minerals and Mining (IMMM), and a Chartered Engineer of the IMMM. Mr. Rogers has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Rogers consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

This announcement was authorised by the Chairman of the Company.

Anthony Barton

King River Resources Limited

Email: info@kingriverresources.com.au

Phone: +61 8 92218055

254 Adelaide Tce

Perth WA 6000

PO Box Z5518, Perth WA 6831

PHONE: +61 (0)8 9221 8055

FAX: +61 (0)8 9325 8088

WEB:www.kingriverresources.com.au

Figure 1: Location of the Junction Prospect (yellow box) and Mining Leases at Speewah.

Figure 2: Diamond core hole locations (black stars) and Reverse Circulation drill holes (red dots) within the Central Vanadium Deposit, including metallurgical core hole SDH11-09 referred to in this announcement. Diamond core hole collar data is given in Table 1.

Table 1: Diamond core holes drilled in the Central deposit

Hole_id

Deposit

East_GDA

North_GDA

RL

Depth

Dip

Azimuth

Tenement

m

m

m

m

degrees

degrees

SDH08-3

Central

387830.42

8190778.6

197.037

80

-90

0

E80/2863

SDH08-4

Central

389203.71

8189358.8

190.014

75

-90

0

E80/2863

SDH08-6

Central

387831.84

8190783.9

197.187

450.5

-90

0

E80/2863

SDH09-2

Central

387793.53

8190327.7

196.267

50

-90

0

E80/2863

SDH09-3

Central

388287.08

8189417.5

189.987

70.5

-90

0

E80/2863

SDH09-4

Central

388016.74

8190007.5

194.698

42.1

-90

0

E80/2863

SDH09-5

Central

388502.3

8188487.8

186.4

57.1

-90

0

E80/2863

SDH11-06

Central

388234.08

8188240.6

188.018

39.4

-90

0

E80/2863

SDH11-07

Central

388234.04

8188243.7

187.999

41.6

-90

0

E80/2863

SDH11-08

Central

388234.08

8188246.9

187.941

40.9

-90

0

E80/2863

SDH11-09

Central

387946.28

8189294

191.676

40.9

-90

0

E80/2863

SDH11-10

Central

387945.75

8189295.9

191.643

39.4

-90

0

E80/2863

SDH11-11

Central

387945.33

8189297.8

191.706

40.9

-90

0

E80/2863

SDH11-12

Central

387243.47

8191101.7

212.529

41

-90

0

E80/2863

SDH11-13

Central

387242.63

8191101.2

212.467

41

-90

0

E80/2863

SDH11-14

Central

387241.65

8191100.6

212.457

40.1

-90

0

E80/2863

Appendix 1: King River Resources Limited Speewah Project JORC 2012 Table 1

SECTION 1 : SAMPLING TECHNIQUES AND DATA

Criteria

JORC Code explanation

Commentary

Sampling

Nature and quality of sampling (e.g. cut channels, random chips, or

This ASX Release dated 21 January 2020 provides a PFS Update and reports on sulphuric acid

Techniques

specific specialised industry standard measurement tools appropriate to

leach testwork on a sample from the high grade zone of the Central Vanadium deposit at KRR's

the minerals under investigation, such as down hole gamma sondes, or

Speewah Project.

handheld XRF instruments, etc.). These examples should not be taken

Diamond Core Sample

as limiting the broad meaning of sampling.

16 HQ and PQ diamond drill (DD) core holes were drilled in the Central Vanadium deposit (see

Include reference to measures taken to ensure sample representivity

Figure 1 and Table 1 for locations).

One of the PQ core holes from the high grade zone (SDH11-09 - 21-37.5m) has been used in

and the appropriate calibration of any measurement tools or systems

the hydrometallurgical metallurgical tests reported in this announcement.

used.

Nagrom received a 60kg composite magnetite gabbro sample of PQ ¼ core from the high grade

Aspects of the determination of mineralisation that are Material to the

zone of drillhole SDH11-09 - 21-37.5m downhole. The head grade of this sample is 0.36%

V2O5, 3.65% TiO2, 21.37% Fe2O3, 12.74% Al2O3, 8.36% CaO, 4.33% MgO and 44.75% SiO2

Public Report.

(KRR ASX 1 March 2019).

In cases where 'industry standard' work has been done this would be

Leach Sample

relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m

samples from which 3 kg was pulverised to produce a 30 g charge for

.A subsample of the as received sample was used in the leach testwork reported in this

fire assay'). In other cases more explanation may be required, such as

announcement. It assayed:

where there is coarse gold that has inherent sampling problems.

0.36% V2O5, 3.64% TiO2, 21.37% Fe2O3, 12.74% Al2O3, 8.36% CaO, 4.33% MgO, 2.32% Na2O,

Unusual commodities or mineralisation types (e.g. submarine nodules)

1.12% K20 and 44.75% SiO2

may warrant disclosure of detailed information.

Drilling

Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air

Diamond (NQ and HQ3 size) drilling was completed to support the preparation of the Mineral

techniques

blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple

Resource estimate. Holes drilled vertical.

or standard tube, depth of diamond tails, face-sampling bit or other

Metallurgical testwork was completed on ¼ PQ core composite sample from one metallurgical

type, whether core is oriented and if so, by what method, etc.).

diamond drill core hole (Figure 2 and Table 1):

SDH11-0921-37.5m (High Grade Zone).

Drill sample

Method of recording and assessing core and chip sample recoveries

No qualitative recovery data was recorded. Qualitative examination and photography suggested

recovery

and results assessed.

RC and diamond recoveries are very high. Good ground conditions exist which suggests

recovery is likely to be very high.

Measures taken to maximise sample recovery and ensure

PQ drilling was used to maximise diamond sample recovery.

representative nature of the samples.

Whether a relationship exists between sample recovery and grade and

No relationship between grade and recovery has been identified.

whether sample bias may have occurred due to preferential loss/gain of

fine/coarse material.

Logging

Whether core and chip samples have been geologically and

DD core and RC chips were geologically logged, with descriptions of mineralogy and lithology

geotechnically logged to a level of detail to support appropriate Mineral

noted.

Resource estimation, mining studies and metallurgical studies.

Whether logging is qualitative or quantitative in nature. Core (or

Logging was generally qualitative in nature. DD core photographed wet.

costean, channel, etc.) photography.

The total length and percentage of the relevant intersections logged.

SDH11-09 - 0-40.9m, 100% logged.

Sub-sampling

If core, whether cut or sawn and whether quarter, half or all core taken.

DD core was cut in half with a core saw. Some half sections sawn in quarters. ¼ core used in

techniques and

testwork.

sample

If non-core, whether riffled, tube sampled, rotary split, etc. and whether

Not applicable as samples used in the reported testwork were DD core.

preparation

sampled wet or dry.

For all sample types, the nature, quality and appropriateness of the

Whole continuous lengths of DD ¼ core samples collected, composited and used in testwork.

sample preparation technique.

These were collected to represent the composite intervals of both the High Grade and Low

Grade Zones.

Quality control procedures adopted for all sub-sampling stages to

Subsampling is performed during the preparation stage according to the metallurgical

maximise representivity of samples.

laboratories' internal protocol.

Measures taken to ensure that the sampling is representative of the in

Use of DD core in metallurgical testwork gives a continuous insitu sample. PQ ensures high

situ material collected, including for instance results for field

recovery rates. DD core twinned previous RC drill holes. Whole sample interval used in

duplicate/second-half sampling.

testwork.

Whether sample sizes are appropriate to the grain size of the material

Sample sizes are considered appropriate to the grain size of the material being sampled.

being sampled.

Quality of

The nature, quality and appropriateness of the assaying and laboratory

The acid leach testwork was undertaken by Nagrom

assay data and

procedures used and whether the technique is considered partial or

laboratory

total.

Nagrom Testwork

tests

All solid samples have been analysed via XRF. The prepared sample is fused in a lithium borate

flux with a lithium nitrate additive. The resultant glass bead is analysed by XRF. Loss on Ignition

(LOI) is also conducted to allow for the determination of oxide totals.

All solution samples are diluted and then analysed by ICP. Dilutions bring the concentration level

to within the analytical range of the ICP instruments. Diluents are matched to sample matrix.

For geophysical tools, spectrometers, handheld XRF instruments, etc.,

No geophysical data was collected.

the parameters used in determining the analysis including instrument

make and model, reading times, calibrations factors applied and their

derivation, etc.

Nature of quality control procedures adopted (e.g. standards, blanks,

Nagrom is certified to a minimum of ISO 9001:2008.

duplicates, external laboratory checks) and whether acceptable levels

of accuracy (i.e. lack of bias) and precision have been established.

Verification of

The verification of significant intersections by either independent or

Significant intersections have been verified by alternative company personnel.

sampling and

alternative company personnel.

assaying

The use of twinned holes.

All metallurgical DD core holes twinned previous RC holes. SDH11-09 has been twinned by

SDH11-10 and SDH11-11 (see Figure 2 and Table 1) which is being used in current

metallurgical testwork.

Documentation of primary data, data entry procedures, data verification,

Templates have been set up to facilitate geological logging. Prior to the import into the central

data storage (physical and electronic) protocols.

database, logging data is validated for conformity and overall systematic compliance by the

geologist. Assay results are received from the laboratory in digital format. Assays, survey data

and geological logs incorporated into a database.

Discuss any adjustment to assay data.

No adjustments or calibrations will be made to any primary assay data collected for the purpose

of reporting assay grades and mineralised intervals.

Location of

Accuracy and quality of surveys used to locate drill holes (collar and

Almost 90% of the collars used in the resource estimate have been surveyed using a

data points

down-hole surveys), trenches, mine workings and other locations used

differential global positioning system (DGPS) instrument, with the remaining surveyed using a

in Mineral Resource estimation.

hand-held GPS. Downhole deviations have been measured by downhole survey instruments

on 3 holes only using a Globaltech Pathfinder digital downhole camera. All but four holes are

vertical. All metallurgical holes are vertical. The vertical and shallow nature of the drilling

means that the absence of downhole surveys is not considered a material risk.

Specification of the grid system used.

The adopted grid system is GDA 94 Zone 52.

Quality and adequacy of topographic control.

A topographic file provided by KRR was calibrated for use in the Mineral Resource estimate

using DGPS and GPS collar data. The Competent Person considers that the topography file is

accurate given the use of DGPS data in the Mineral Resource area.

Data spacing

Data spacing for reporting of Exploration Results.

RC drill spacing is mostly 250 m by 250 m at the Central deposit, closing down to 100 m by 100

and

m in the western area (see Figure 1).

distribution

Metallurgical DD core holes are spaced about 500 m apart (see Figure 1).

Whether the data spacing and distribution is sufficient to establish the

The Competent Person believes the mineralised domains have sufficient geological and grade

degree of geological and grade continuity appropriate for the Mineral

continuity to support the classification applied to the Mineral Resources given the current drill

Resource and Ore Reserve estimation procedure(s) and classifications

pattern.

applied.

Whether sample compositing has been applied.

Metallurgical samples were composited to represent the High Grade and Low Grade Zones

within the magnetite gabbro and within the resource envelope. This was considered

appropriate given the metallurgical testwork was designed to test the lower and high grade

zones of the mineralisation and it provided for a bulk sample suitable for the testwork.

Orientation of

Whether the orientation of sampling achieves unbiased sampling of

All metallurgical DD core holes are vertical. This allows the holes to intersect the mineralisation

data in relation

possible structures and the extent to which this is known, considering

at a high-angle as the magnetite gabbro has a very shallow dip to the east.

to geological

the deposit type.

structure

If the relationship between the drilling orientation and the orientation of

The relationship between the drilling orientation and the orientation of key mineralised

key mineralised structures is considered to have introduced a sampling

structures is not considered to have introduced a sampling bias.

bias, this should be assessed and reported if material.

Sample

The measures taken to ensure sample security.

Chain of Custody is managed by the Company until samples pass to a duly certified

security

metallurgical laboratory for subsampling, assaying, beneficiation and hydrometallurgical test

work. The DD core samples are stored on secure sites and delivered to the metallurgical

laboratory by the Company or a competent agent. The chain of custody passes upon delivery

of the samples to the metallurgical laboratory.

Audits or

The results of ay audits or reviews of sampling techniques and data.

No external audits have been completed.

Reviews

SECTION 2 : REPORTING OF EXPLORATION RESULTS

Criteria

JORC Code explanation

Commentary

Mineral tenement

Type, reference name/number, location and ownership including agreements

The Speewah Project comprises 9 Exploration Licences, three Mining Leases and two

and land tenure

or material issues with third parties such as joint ventures, partnerships,

Miscellaneous Licences. Details are listed in Table 1 Schedule of Tenements held at 30

status

overriding royalties, native title interests, historical sites, wilderness or national

September 2019 reported previously in the September 2019 Quarterly Report. The

park and environmental settings.

Speewah testwork reported in this announcement are from samples collected entirely

within E80/2863. The tenements are 100% owned by Speewah Mining Pty Ltd (a wholly

The security of the tenure held at the time of reporting along with any known

owned subsidiary of King River Resources Limited), located over the Speewah Dome,

impediments to obtaining a licence to operate in the area.

100km SW of Kununurra in the East Kimberley. The tenements are in good standing and

no known impediments exist. No Native Title Claim covers the areas sampled and

drilled. The northern part of the tenements (but not E80/2863) is in the Kimberley

Heritage Area.

Exploration done

Acknowledgment and appraisal of exploration by other parties.

No exploration completed by other parties is relevant for the metallurgical testwork

by other parties

reported herein.

Geology

Deposit type, geological setting and style of mineralisation.

The ferrovanadium titanium (Ti-V-Fe) deposits represent part of a large layered intrusion

(the Hart Dolerite), which was intruded c1790 Ma into the Palaeo-Proterozoic sediments

and minor volcanics of the 1814 Ma Speewah Group in the East Kimberley Region of

Western Australia.

The deposits occur within the Speewah Dome, which is an elongated antiform trending

N-S. The dome is about 30 km long and attains a maximum width of about 15 km. The

Hart Dolerite sill forms the core of the dome.

Since the deposit discovery in 2006, at least two distinct types of felsic granophyres and

three mafic gabbros have been identified in the Hart Dolerite as follows:

K felsic granophyre (youngest)

Mafic granophyre

Pegmatoidal gabbro

Magnetite gabbro (host unit)

Felsic gabbro (oldest).

The vanadium-titanium mineralisation is hosted within a magnetite bearing gabbro unit

of the Hart Dolerite, outcropping in places and forming a generally flat dipping body that

extends over several kilometres of strike and width. The layered sill is up to 400m thick

containing the magnetite gabbro unit which is up to 80m thick.

Given the mode of formation, mineralisation displays excellent geological and grade

continuity which was considered when classifying the Mineral Resource estimate.

Exposure is limited and fresh rock either outcrops or is at a shallow depth of a few

metres.

Ti-V-Fe mineralisation occurs as disseminations of vanadiferous titano-magnetite and

ilmenite.

Within the tenements the vanadium deposits have been divided into three deposits -

Central, Buckman and Red Hill. The test work reported in this announcement was

sampled from the Central vanadium deposit (Figure 1).

Drill hole

A summary of all information material to the understanding of the exploration

New exploration results are not being reported.

Information

results including a tabulation of the following information for all Material drill

Locations of diamond (DD) core holes, including metallurgical core holes used in this

holes:

announcement, are shown on Figure 2 and Table 1.

o easting and northing of the drill hole collar

o elevation or RL (Reduced Level - elevation above sea level in metres) of

the drill hole collar

o dip and azimuth of the hole

o down hole length and interception depth

o hole length.

o If the exclusion of this information is justified on the basis that the

information is not Material and this exclusion does not detract from the

understanding of the report, the Competent Person should clearly explain

why this is the case.

Data aggregation

In reporting Exploration Results, weighting averaging techniques, maximum

Exploration results are not being reported.

methods

and/or minimum grade truncations (e.g. cutting of high grades) and cut-off

grades are usually Material and should be stated.

Where aggregate intercepts incorporate short lengths of high grade results

Continuous lengths of ¼ core composited for metallurgical samples from the Low Grade

and longer lengths of low grade results, the procedure used for such

and High Grade Zones.

aggregation should be stated and some typical examples of such

aggregations should be shown in detail.

The assumptions used for any reporting of metal equivalent values should be

No metal equivalent values are used for reporting.

clearly stated.

Relationship

These relationships are particularly important in the reporting of Exploration

Due to the very shallow dip of the mineralisation, the vertical metallurgical DD core holes

between

Results. If the geometry of the mineralisation with respect to the drill hole

represent almost the true width of the mineralisation.

mineralisation

angle is known, its nature should be reported. If it is not known and only the

widths and

down hole lengths are reported, there should be a clear statement to this

intercept lengths

effect (e.g. 'down hole length, true width not known').

Diagrams

Appropriate maps and sections (with scales) and tabulations of intercepts

Figure 2 shows the location of diamond core holes within the Central Vanadium deposit

should be included for any significant discovery being reported These should

referred to in this announcement.

include, but not be limited to a plan view of drill hole collar locations and

appropriate sectional views.

Balanced

Where comprehensive reporting of all Exploration Results is not practicable,

Reports on previous metallurgical results can be found in ASX Releases that are

reporting

representative reporting of both low and high grades and/or widths should be

available on our website, including announcements 1 April 2010, 15 July 2010, 9

practiced to avoid misleading reporting of Exploration Results.

November 2010, 8 February 2012, 21 April 2017, 21 August 2017, 9 October 2017, 4

December 2017, 30 January 2018, 27 February 2018, 21 March 2018, 25 June 2018, 23

July 2018, 15 October 2018,19 November 2018, 18 January 2019, 1 March 2019, 21

March 2019, 22 March 2019, 9 May 2019, 7 June 2019, 27 September 2019, 26

November 2019 and 6 December 2019.

Other substantive

Other exploration data, if meaningful and material, should be reported

Updated vanadium resource estimates in accordance with the JORC 2012 guidelines

exploration data

including (but not limited to): geological observations; geophysical survey

were reported in KRR ASX announcement 26 May 2017. 1 April 2019 and 6 November

results; geochemical survey results; bulk samples - size and method of

2019.

treatment; metallurgical test results; bulk density, groundwater, geotechnical

and rock characteristics; potential deleterious or contaminating substances.

Further work

The nature and scale of planned further work (e.g. tests for lateral extensions

Further metallurgical tests are planned to increase metal recoveries, shorten leach times

or depth extensions or large-scalestep-out drilling). Diagrams clearly

and reduce acid consumption, and trialing selective chemical precipitation, thermal

highlighting the areas of possible extensions, including the main geological

hydrolysis, ion exchange and solvent extraction methods to precipitate vanadium

interpretations and future drilling areas, provided this information is not

pentoxide, titanium dioxide, iron oxide and high purity alumina (HPA).

commercially sensitive.

Attachments

  • Original document
  • Permalink

Disclaimer

King River Resources Ltd. published this content on 21 January 2020 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 21 January 2020 05:08:07 UTC