NEWPORT NEWS, Va. and ATLANTA, January 18, 2012

Symmetry helps radiation oncologists at Riverside & University of Virginia Radiosurgery Center avoid excess dose to healthy tissues by isolating mobile tumors

In treatments of only the first handful of patients with lung or liver tumors, Riverside & University of Virginia Radiosurgery Center (Newport News, Va.) clinicians have demonstrated the dramatic benefit that 4D image guidance technology can provide for patients whose tumors move with their breathing. Symmetry essentially yields a more distinct picture of the tumor, without the blurring associated with breathing motion.

By having a clearer picture of the tumor position and its motion, physicians have been able to improve their targeting of tumors, thereby avoiding having to treat a larger margin of healthy tissue around the lesion. A Symmetry scan is acquired just before treatment to ensure that the patient is correctly positioned, and to visualize tumor movement.

"Symmetry scans give us clearer information about the movement of the tumor, allowing us to increase the safety of treating our patients by decreasing the dose to healthy tissues, while hopefully providing a better clinical outcome," according to Riverside medical physicist Kelly Spencer.


Tumor motion in sharper focus

Before they began using the Symmetry feature in Elekta's XVI package of tools, Riverside clinicians were using sophisticated (VolumeView™ CBCT) imaging technology integrated with their to image tumors. These pre-treatment scans provide physicians with added confidence in the margins that they have planned. Although seeing a target with IGRT technology such as VolumeView has been a key clinical improvement, the motion still created a blur that encompassed the tumor's range of motion.

"For our current protocol, we would create an ITV [internal target volume] to cover the blur we see on the VolumeView," Spencer says. "We began using Symmetry on a couple of patients with lower lung lesions near the diaphragm where we would expect tumor motion to be an issue. We were actually quite mesmerized by the images Symmetry provided. We could clearly see the actual motion of the delineated tumor with respect to the patient's breathing."

The same Symmetry benefit applied to a recent patient with a liver tumor situated near the diaphragm. In this case, clinicians inferred tumor motion by observing the movement of the liver with the patient's breathing.

"We wanted to use Symmetry to see how the superior border of the liver moved, and what we observed was that it did not move simply superior to inferior - there was almost a rolling pattern to the liver motion," Spencer recalls. "We knew that the liver didn't necessarily move symmetrically on CBCT scans, but it was harder to appreciate due to motion artifact. This movement probably varies between patients, so that is an excellent reason to use Symmetry to evaluate this motion on a case-by-case basis."

The extent of tumor motion as depicted in a Symmetry scan helps clinicians confirm that the margins around the tumor that they applied during the planning phase are as small as possible, thereby protecting healthy uninvolved tissues.

"For example, The Radiation Therapy Oncology Group SBRT Lung protocol criterion is 1.0 cm margins superior and inferior on the gross tumor volume," he notes. "With Symmetry we can potentially reduce the standard margins and thereby decrease the dose to the uninvolved lung tissues."

Accounting for tumor motion is especially important for patients with lung tumors, as Riverside's protocol calls for beam delivery while the patient is breathing freely.

"Many of our lung cancer patients are older, they often have chronic obstructive pulmonary disease or emphysema, so their shortness of breath and erratic breathing pattern makes them unsuited for breath hold treatments or any sort of gating," Spencer says.

He adds that eight out of 10 patients with lung tumors could benefit from a Symmetry scan.

"We are very excited about our future with Symmetry," he says. "We expected to be able to see a clearer picture of tumor motion, but we hadn't appreciated how well we would see the motion in all three dimensions. It hasn't been just superior to inferior tumor motion; Symmetry shows how a tumor can move anterior to posterior or left to right. In that respect, Symmetry has really exceeded our initial expectations."

*Approval of indications may vary between different countries. Additional regulatory clearances may be required in some markets.

###

For further information, please contact:

Stina Thorman, Vice President Corporate Communications, Elekta AB
Tel: +46 8 587 254 37, email: stina.thorman@elekta.com
Time zone: CET: Central European Time

Michelle Lee Joiner, Director, Global Public Relations and Brand Management, Elekta
Tel: +1 770-670-2447, email: michelle.joiner@elekta.com
Time zone: ET: Eastern Time

About Elekta

Elekta is a human care company pioneering significant innovations and clinical solutions for treating cancer and brain disorders. The company develops sophisticated, state-of-the-art tools and treatment planning systems for radiation therapy, radiosurgery and brachytherapy, as well as workflow enhancing software systems across the spectrum of cancer care. Stretching the boundaries of science and technology, providing intelligent and resource-efficient solutions that offer confidence to both healthcare providers and patients, Elekta aims to improve, prolong and even save patient lives.

Today, Elekta solutions in oncology and neurosurgery are used in over 6,000 hospitals worldwide. Elekta employs around 3,300 employees globally. The corporate headquarters is located in Stockholm, Sweden, and the company is listed on the Nordic Exchange under the ticker EKTAb. Website: .

distribué par

Ce noodl a été diffusé par Elekta AB et initialement mise en ligne sur le site http://www.elekta.com. La version originale est disponible ici.

Ce noodl a été distribué par noodls dans son format d'origine et sans modification sur 2012-01-18 15:04:59 PM et restera accessible depuis ce lien permanent.

Cette annonce est protégée par les règles du droit d'auteur et toute autre loi applicable, et son propriétaire est seul responsable de sa véracité et de son originalité.