CEL-SCI Corporation announced that its collaboration with Northeast Ohio Medical University has produced a new investigational breast cancer vaccine which prevents and treats a HER-2/neu expressing breast cancer tumor in a mouse model of the disease. In animal tests this vaccine has shown reduction of number of tumors, reduction of tumor mass, absence of tumor in lymph nodes or peritoneal membranes and changes in angiogenesis.
The L.E.A.P.S vaccine activates a T lymphocyte response targeted to this protein that promotes killing and control of the tumor cell. In these studies, mice were immunized with the J-HER vaccine before, or one week after implantation of HER-2/neu breast cancer cells. In both cases the immune response initiated by the immunization significantly blocked further development and progression of tumors in most of the animals. L.E.A.P.S. is a novel peptide platform technology that enables CEL-SCI to design and synthesize proprietary immunogens. Any disease for which an antigenic sequence has been identified, including infectious, parasitic, malignant or autoimmune diseases and allergies, are potential therapeutic targets for the application of L.E.A.P.S. technology. In addition to the J-HER vaccine, L.E.A.P.S. vaccines have been developed to prevent or treat herpes simplex virus, HIV, influenza and rheumatoid arthritis. The concept behind the L.E.A.P.S. technology is to mimic cell-cell interactions that activate immune cells with synthetic peptides. Depending upon the type of L.E.A.P.S. construct and ICBL used, CEL-SCI is able to direct the outcome of the immune response. The J-ICBL stimulates the only cell that can initiate an immune response, the dendritic cell. J-LEAPS vaccines activate dendritic cells from humans as well as mice. The activated dendritic cells direct T-cells to deliver the appropriate protective or therapeutic response. For J-HER, this response would activate tumor specific T killer cells. A mixture containing J-HER and similar J-LEAPS vaccines can readily be synthesized and used to treat breast cancers in humans.