Celsion Corporation announced that results from the Phase I TARDOX trial of ThermoDox®conducted at the University of Oxford, United Kingdom, were published in the peer-reviewed journal, Radiology. The TARDOX trial evaluated the safety and efficacy of ThermoDox®, Celsion’s proprietary heat-activated liposomal encapsulation of doxorubicin, along with focused ultrasound for the treatment of liver cancer. The article, titled, “Focused Ultrasound Hyperthermia for Targeted Drug Release from Thermosensitive Liposomes: Results from a Phase I Trial,” included an evaluation of the TARDOX results and the safety, efficacy and utility of treatment with ThermoDox® plus targeted, non-invasive hyperthermic ultrasound in patients with solid liver tumors, with treatment plans based on patient-specific modeling. A lysolipid thermally sensitive liposome encapsulating the chemotherapy agent, doxorubicin, ThermoDox®is designed to release targeted levels of doxorubicin into and around liver tumors with heat activation. The Phase I TARDOX study demonstrated that focused ultrasound exposure with ThermoDox® resulted in increased chemotherapy concentrations within liver tumors that were an average of 3.7 times greater than preheating levels across all 10 patients in the study. The Phase I TARDOX study evaluated patients with inoperable primary or secondary liver tumors who had previously received chemotherapy. In this trial, 10 patients received a single intravenous dose of 50 mg/m2 of ThermoDox®, and ultrasonic heating of target tumors was monitored in six participants using a minimally invasive temperature sensor, while four patients were treated without real-time thermometry. Safety was assessed by analysis of magnetic resonance imaging (MRI) and biopsy specimens for evidence of thermal ablation, as well as adverse event monitoring. There was no evidence of focused ultrasound-related adverse effects, including thermal ablation. Numerous studies have demonstrated that focused ultrasound can be used to generate mild heating to facilitate the release of drug cargoes from thermosensitive liposomes (TSLs). The company believes the TARDOX study is the world’s first Phase I clinical trial aimed at evaluating the effect of doxorubicin released from TSLs after focused ultrasound–induced mild hyperthermia. The study presents a model for predicting the focused ultrasound treatment parameters needed to attain mild hyperthermia and facilitate doxorubicin release from TSLs. This model may improve the current clinical use of hyperthermia by providing an alternative strategy for treatment planning based on a thermal model rather than actual thermometry, which is more invasive.