Shockwave Medical, Inc. has initiated its U.S. Food and Drug Administration (FDA) Investigational Device Exemption (IDE) study – DISRUPT CAD III – for the use of IVL in heavily calcified coronary arteries. IVL is an innovative lesion preparation tool designed to fracture problematic calcium using sonic pressure waves in order to facilitate stent delivery, deployment and expansion. The co-principal investigators of the study are Drs. Dean Kereiakes, M.D., FACC, FSCAI, Medical Director of The Christ Hospital Heart and Vascular Center and The Lindner Research Center in Cincinnati, Ohio and Professor of Clinical Medicine, The Ohio State University and Jonathan Hill, M.D., consultant cardiologist at King’s College Hospital in London. The first patient was enrolled last week by Richard A. Shlofmitz, M.D., FACC, Chairman, Department of Cardiology, St. Francis Hospital in Roslyn, New York. Coronary artery calcium physically impairs stent expansion and is perhaps the single most important predictor of early stent thrombosis and restenosis after stent procedures. Current calcium modification treatments, which can be difficult to perform, only address the burden of intimal calcium with varying degrees of success and result in an increased risk for adverse events since these techniques don’t differentiate between the calcific lesion and soft, normal intimal tissue. Coronary IVL is a novel investigational therapy designed to treat calcified artery blockages with sonic pressure waves historically used to treat patients with kidney stones. The technology seeks to minimize trauma within the artery by delivering pulsatile sonic pressure waves locally to fracture both intimal and medial calcium in the artery wall but pass through surrounding soft vascular tissue in a safe manner. The study will assess the freedom from major adverse cardiac events (MACE) within 30 days of the index procedure as the primary safety endpoint. The primary effectiveness endpoint is procedural success which, based on predicate studies, is defined as stent delivery with a residual stenosis of less than 50% and without in-hospital MACE. Enrolled study patients will be followed for two years.